
SA
M
PL
E

pdf version of the entry

Turing Machines
https://plato.stanford.edu/archives/win2021/entries/turing-machine/

from the Winter 2021 Edition of the

Stanford Encyclopedia

of Philosophy

Edward N. Zalta Uri Nodelman

Principal Editor Senior Editor

Colin Allen Hannah Kim Paul Oppenheimer

Associate Editor Associate Editor Associate Editor

Faculty Sponsors: R. Lanier Anderson & Thomas Icard

Editorial Board: https://plato.stanford.edu/board.html

Library of Congress ISSN: 1095-5054

Notice: This PDF version was distributed by request to mem-

bers of the Friends of the SEP Society and by courtesy to SEP

content contributors. It is solely for their fair use. Unauthorized

distribution is prohibited. To learn how to join the Friends of the

SEP Society and obtain authorized PDF versions of SEP entries,

please visit https://leibniz.stanford.edu/friends/ .

Stanford Encyclopedia of Philosophy

Copyright c© 2021 by the publisher

The Metaphysics Research Lab

Department of Philosophy

Stanford University, Stanford, CA 94305

Turing Machines

Copyright c© 2021 by the author

Liesbeth De Mol

All rights reserved.

Copyright policy: https://leibniz.stanford.edu/friends/info/copyright/

Turing Machines
First published Mon Sep 24, 2018

Turing machines, first described by Alan Turing in Turing 1936–7, are
simple abstract computational devices intended to help investigate the
extent and limitations of what can be computed. Turing’s ‘automatic
machines’, as he termed them in 1936, were specifically devised for the
computing of real numbers. They were first named ‘Turing machines’ by
Alonzo Church in a review of Turing’s paper (Church 1937). Today, they
are considered to be one of the foundational models of computability and
(theoretical) computer science.[1]

1. Definitions of the Turing Machine
1.1 Turing’s Definition
1.2 Post’s Definition
1.3 The Definition Formalized
1.4 Describing the Behavior of a Turing Machine

2. Computing with Turing Machines
2.1 Some (Simple) Examples
2.2 Computable Numbers and Problems
2.3 Turing’s Universal Machine

2.3.1 Interchangeability of program and behavior: a
notation
2.3.2 Interchangeability of program and behavior: a basic
set of functions

2.4 The Halting Problem and the Entscheidungsproblem
2.4.1 Direct and indirect proofs of uncomputable decision
problems
2.4.2 Turing’s basic problem CIRC?, PRINT? and the
Entscheidungsproblem
2.4.3 The halting problem

1

2.5 Variations on the Turing machine
3. Philosophical Issues Related to Turing Machines

3.1 Human and Machine Computations
3.2 Thesis, Definition, Axioms or Theorem

4. Alternative Historical Models of Computability
4.1 General Recursive Functions
4.2 λ-Definability
4.3 Post Production Systems
4.4 Formulation 1

5. Impact of Turing Machines on Computer Science
5.1 Impact on Theoretical Computer Science
5.2 Turing Machines and the Modern Computer
5.3 Theories of Programming

Bibliography
Academic Tools
Other Internet Resources

Busy Beaver
The Halting Problem
Online Turing Machine Simulators

Software simulators
Hardware simulators

Related Entries

1. Definitions of the Turing Machine

1.1 Turing’s Definition

Turing introduced Turing machines in the context of research into the
foundations of mathematics. More particularly, he used these abstract
devices to prove that there is no effective general method or procedure to
solve, calculate or compute every instance of the following problem:

Turing Machines

2 Stanford Encyclopedia of Philosophy

Note that in its original form (Hilbert & Ackermann 1928), the problem
was stated in terms of validity rather than derivability. Given Gödel’s
completeness theorem (Gödel 1929) proving that there is an effective
procedure (or not) for derivability is also a solution to the problem in its
validity form. In order to tackle this problem, one needs a formalized
notion of “effective procedure” and Turing’s machines were intended to do
exactly that.

A Turing machine then, or a computing machine as Turing called it, in
Turing’s original definition is a machine capable of a finite set of
configurations (the states of the machine, called m-
configurations by Turing). It is supplied with a one-way infinite and one-
dimensional tape divided into squares each capable of carrying exactly one
symbol. At any moment, the machine is scanning the content of one
square r which is either blank (symbolized by) or contains a symbol

 with and .

The machine is an automatic machine (a-machine) which means that at
any given moment, the behavior of the machine is completely determined
by the current state and symbol (called the configuration) being scanned.
This is the so-called determinacy condition (Section 3). These a-machines
are contrasted with the so-called choice machines for which the next state
depends on the decision of an external device or operator (Turing 1936–7:
232). A Turing machine is capable of three types of action:

1. Print , move one square to the left (L) and go to state
2. Print , move one square to the right (R) and go to state

Entscheidungsproblem The problem to decide for every statement
in first-order logic (the so-called restricted functional calculus, see
the entry on classical logic for an introduction) whether or not it is
derivable in that logic.

, … ,q1 qn

S0
, … ,S1 Sm = 0S1 = 1S2

Si qj
Si qj

Liesbeth De Mol

Winter 2021 Edition 3

3. Print , do not move (N) and go to state

The ‘program’ of a Turing machine can then be written as a finite set of
quintuples of the form:

Where is the current state, the content of the square being scanned,
 the new content of the square; specifies whether the machine is to

move one square to the left, to the right or to remain at the same square,
and is the next state of the machine. These quintuples are also called
the transition rules of a given machine. The Turing machine which,
when started from a blank tape, computes the sequence is
then given by Table 1.

TABLE 1: Quintuple representation of

Note that will never enter a configuration where it is scanning so
that two of the four quintuples are redundant. Another typical format to
represent Turing machines and which was also used by Turing is the
transition table. Table 2 gives the transition table of .

TABLE 2: Transition table for

Si qj

qiSjSi,jMi,jqi,j

qi Sj
Si,j Mi,j

qi,j
TSimple

…S0S1S0S1

TSimple

; Rq1S0S0 q2
; Rq1S1S0 q2
; Rq2S0S1 q1
; Rq2S1S1 q1

TSimple S1

TSimple

TSimple

S0 S1
q1 RS0 q2 RS0 q2
q2 RS1 q1 RS1 q1

Turing Machines

4 Stanford Encyclopedia of Philosophy

Where current definitions of Turing machines usually have only one type
of symbols (usually just 0 and 1; it was proven by Shannon that any
Turing machine can be reduced to a binary Turing machine (Shannon
1956)) Turing, in his original definition of so-called computing machines,
used two kinds of symbols: the figures which consist entirely of 0s and 1s
and the so-called symbols of the second kind. These are differentiated on
the Turing machine tape by using a system of alternating squares of
figures and symbols of the second kind. One sequence of alternating
squares contains the figures and is called the sequence of F-squares. It
contains the sequence computed by the machine; the other is called the
sequence of E-squares. The latter are used to mark F-squares and are there
to “assist the memory” (Turing 1936–7: 232). The content of the E-
squares is liable to change. F-squares however cannot be changed which
means that one cannot implement algorithms whereby earlier computed
digits need to be changed. Moreover, the machine will never print a
symbol on an F-square if the F-square preceding it has not been computed
yet. This usage of F and E-squares can be quite useful (see Sec. 2.3) but,
as was shown by Emil L. Post, it results in a number of complications (see
Sec. 1.2).

There are two important things to notice about the Turing machine setup.
The first concerns the definition of the machine itself, namely that the
machine’s tape is potentially infinite. This corresponds to an assumption
that the memory of the machine is (potentially) infinite. The second
concerns the definition of Turing computable, namely that a function will
be Turing computable if there exists a set of instructions that will result in
a Turing machine computing the function regardless of the amount of time
it takes. One can think of this as assuming the availability of potentially
infinite time to complete the computation.

These two assumptions are intended to ensure that the definition of
computation that results is not too narrow. This is, it ensures that no

Liesbeth De Mol

Winter 2021 Edition 5

computable function will fail to be Turing-computable solely because
there is insufficient time or memory to complete the computation. It
follows that there may be some Turing computable functions which may
not be carried out by any existing computer, perhaps because no existing
machine has sufficient memory to carry out the task. Some Turing
computable functions may not ever be computable in practice, since they
may require more memory than can be built using all of the (finite number
of) atoms in the universe. If we moreover assume that a physical computer
is a finite realization of the Turing machine, and so that the Turing
machine functions as a good formal model for the computer, a result
which shows that a function is not Turing computable is very strong, since
it implies that no computer that we could ever build could carry out the
computation. In Section 2.4, it is shown that there are functions which are
not Turing-computable.

1.2 Post’s Definition

Turing’s definition was standardized through (some of) Post’s
modifications of it in Post 1947. In that paper Post proves that a certain
problem from mathematics known as Thue’s problem or the word problem
for semi-groups is not Turing computable (or, in Post’s words, recursively
unsolvable). Post’s main strategy was to show that if it were decidable
then the following decision problem from Turing 1936–7 would also be
decidable:

It was however proven by Turing that PRINT? is not Turing computable
and so the same is true of Thue’s problem.

PRINT? The problem to decide for every Turing machine M
whether or not it will ever print some symbol (for instance, 0).

Turing Machines

6 Stanford Encyclopedia of Philosophy

While the uncomputability of PRINT? plays a central role in Post’s proof,
Post believed that Turing’s proof of that was affected by the “spurious
Turing convention” (Post 1947: 9), viz. the system of F and E-squares.
Thus, Post introduced a modified version of the Turing machine. The most
important differences between Post’s and Turing’s definition are:

1. Post’s Turing machine, when in a given state, either prints or moves
and so its transition rules are more ‘atomic’ (it does not have the
composite operation of moving and printing). This results in the
quadruple notation of Turing machines, where each quadruple is in
one of the three forms of Table 3:

TABLE 3: Post’s Quadruple notation

2. Post’s Turing machine has only one kind of symbol and so does not
rely on the Turing system of F and E-squares.

3. Post’s Turing machine has a two-way infinite tape.
4. Post’s Turing machine halts when it reaches a state for which no

actions are defined.

Note that Post’s reformulation of the Turing machine is very much rooted
in his Post 1936. (Some of) Post’s modifications of Turing’s definition
became part of the definition of the Turing machine in standard works
such as Kleene 1952 and Davis 1958. Since that time, several (logically
equivalent) definitions have been introduced. Today, standard definitions
of Turing machines are, in some respects, closer to Post’s Turing machines
than to Turing’s machines. In what follows we will use a variant on the
standard definition from Minsky 1967 which uses the quintuple notation
but has no E and F-squares and includes a special halting state H. It also

qiSjSi,jqi,j
LqiSj qi,j
RqiSj qi,j

Liesbeth De Mol

Winter 2021 Edition 7

has only two move operations, viz., L and R and so the action whereby the
machine merely prints is not used. When the machine is started, the tape is
blank except for some finite portion of the tape. Note that the blank square
can also be represented as a square containing the symbol or simply 0.
The finite content of the tape will also be called the dataword on the tape.

1.3 The Definition Formalized

Talk of “tape” and a “read-write head” is intended to aid the intuition (and
reveals something of the time in which Turing was writing) but plays no
important role in the definition of Turing machines. In situations where a
formal analysis of Turing machines is required, it is appropriate to spell
out the definition of the machinery and program in more mathematical
terms. Purely formally a Turing machine can be specified as a quadruple

 where:

Q is a finite set of states q
 is a finite set of symbols

s is the initial state

 is a transition function determining the next move:

The transition function for the machine T is a function from computation
states to computation states. If , then when the
machine’s state is , reading the symbol , replaces by , moves in
direction and goes to state .

S0

T = (Q, Σ, s, δ)

Σ
s ∈ Q

δ

δ : (Q × Σ) → (Σ × {L, R} × Q)

δ(,) = (, D,)qi Sj Si,j qi,j
qj Sj T Sj Si,j

D ∈ {L, R} qi,j

Turing Machines

8 Stanford Encyclopedia of Philosophy

1.4 Describing the Behavior of a Turing Machine

We introduce a representation which allows us to describe the behavior or
dynamics of a Turing machine , relying on the notation of the complete
configuration (Turing 1936–7: 232) also known today as instantaneous
description (ID) (Davis 1982: 6). At any stage of the computation of its
ID is given by:

(1) the content of the tape, that is, its data word
(2) the location of the reading head
(3) the machine’s internal state

So, given some Turing machine T which is in state scanning the symbol
, its ID is given by where P and Q are the finite words to the left

and right hand side of the square containing the symbol . Figure 1 gives
a visual representation of an ID of some Turing machine T in state
scanning the tape.

FIGURE 1: A complete configuration of some Turing machine T

The notation thus allows us to capture the developing behavior of the
machine and its tape through its consecutive IDs. Figure 2 gives the first
few consecutive IDs of using a graphical representation.

FIGURE 2: The dynamics of graphical representation

Tn

Ti

qi
Sj P QqiSj

Sj
qi

TSimple

TSimple

Liesbeth De Mol

Winter 2021 Edition 9

The animation can be started by clicking on the picture. One can also
explicitly print the consecutive IDs, using their symbolic representations.
This results in a state-space diagram of the behavior of a Turing machine.
So, for we get (Note that means the infinite repetition of 0s):

2. Computing with Turing Machines

As explained in Sec. 1.1, Turing machines were originally intended to
formalize the notion of computability in order to tackle a fundamental
problem of mathematics. Independently of Turing, Alonzo Church gave a
different but logically equivalent formulation (see Sec. 4). Today, most
computer scientists agree that Turing’s, or any other logically equivalent,
formal notion captures all computable problems, viz. for any computable
problem, there is a Turing machine which computes it. This is known as
the Church-Turing thesis, Turing’s thesis (when the reference is only to
Turing’s work) or Church’s thesis (when the reference is only to Church’s
work).

It implies that, if accepted, any problem not computable by a Turing
machine is not computable by any finite means whatsoever. Indeed, since
it was Turing’s ambition to capture “[all] the possible processes which can

TSimple 0⎯⎯⎯

00⎯⎯⎯
q1 0⎯⎯⎯

0 00⎯⎯⎯
q2 0⎯⎯⎯

01 00⎯⎯⎯
q1 0⎯⎯⎯

010 00⎯⎯⎯
q2 0⎯⎯⎯

0101 00⎯⎯⎯
q1 0⎯⎯⎯

01010 00⎯⎯⎯
q2 0⎯⎯⎯

⋮

Turing Machines

10 Stanford Encyclopedia of Philosophy

be carried out in computing a number” (Turing 1936–7: 249), it follows
that, if we accept Turing’s analysis:

Any problem not computable by a Turing machine is not
“computable” in the absolute sense (at least, absolute relative to
humans, see Section 3).
For any problem that we believe is computable, we should be able to
construct a Turing machine which computes it. To put it in Turing’s
wording:

In this section, examples will be given which illustrate the computational
power and boundaries of the Turing machine model. Section 3 then
discusses some philosophical issues related to Turing’s thesis.

2.1 Some (Simple) Examples

In order to speak about a Turing machine that does something useful from
the human perspective, we will have to provide an interpretation of the
symbols recorded on the tape. For example, if we want to design a
machine which will compute some mathematical function, addition say,
then we will need to describe how to interpret the ones and zeros
appearing on the tape as numbers.

In the examples that follow we will represent the number n as a block of
 copies of the symbol ‘1’ on the tape. Thus we will represent the

number 0 as a single ‘1’ and the number 3 as a block of four ‘1’s. This is
called unary notation.

It is my contention that [the] operations [of a computing
machine] include all those which are used in the computation
of a number. (Turing 1936–7: 231)

n + 1

Liesbeth De Mol

Winter 2021 Edition 11

We will also have to make some assumptions about the configuration of
the tape when the machine is started, and when it finishes, in order to
interpret the computation. We will assume that if the function to be
computed requires n arguments, then the Turing machine will start with its
head scanning the leftmost ‘1’ of a sequence of n blocks of ‘1’s. The
blocks of ‘1’s representing the arguments must be separated by a single
occurrence of the symbol ‘0’. For example, to compute the sum , a
Turing machine will start in the configuration shown in Figure 3.

FIGURE 3: Initial configuration for a computation over two numbers n and
m

Here the supposed addition machine takes two arguments representing the
numbers to be added, starting at the leftmost 1 of the first argument. The
arguments are separated by a single 0 as required, and the first block
contains four ‘1’s, representing the number 3, and the second contains five
‘1’s, representing the number 4.

A machine must finish in standard configuration too. There must be a
single block of symbols (a sequence of 1s representing some number or a
symbol representing another kind of output) and the machine must be
scanning the leftmost symbol of that sequence. If the machine correctly
computes the function then this block must represent the correct answer.

Adopting this convention for the terminating configuration of a Turing
machine means that we can compose machines by identifying the final
state of one machine with the initial state of the next.

3 + 4

Turing Machines

12 Stanford Encyclopedia of Philosophy

Addition of two numbers n and m

Table 4 gives the transition table of a Turing machine which adds
two natural numbers n and m. We assume the machine starts in state
scanning the leftmost 1 of .

TABLE 4: Transition table for

0 1
/

The idea of doing an addition with Turing machines when using unary
representation is to shift the leftmost number n one square to the right.
This is achieved by erasing the leftmost 1 of (this is done in state

) and then setting the 0 between and to 1 (state). We
then have and so we still need to erase one additional 1. This is
done by erasing the leftmost 1 (states and). Figure 4 shows this
computation for .

FIGURE 4: The computation of by

Addition of n numbers

We can generalize to a Turing machine for the addition of an
arbitrary number i of integers . We assume again that the
machine starts in state scanning the leftmost 1 of . The transition
table for such a machine is given in Table 5.

TAdd2
q1

n + 1
TAdd2

q1 0 R q2
q2 1 L q3 1 R q2
q3 0 R q4 1 L q3
q4 / 0 R qhalt

n + 1
q1 n + 1 m + 1 q2

n + m + 2
q3 q4

3 + 4

3 + 4 TAdd2

TAdd2 TAddi

, , … ,n1 n2 nj
q1 + 1n1

TAddi

Liesbeth De Mol

Winter 2021 Edition 13

TABLE 5: Transition table for

0 1
/

/

The machine uses the principle of shifting the addends to the right
which was also used for . More particularly, computes the sum
of , ,… from left to right, viz. it computes this sum as
follows:

The most important difference between and is that needs
to verify if the leftmost addend is equal to . This is
achieved by checking whether the first 0 to the right of is followed by
another 0 or not (states and). If it is not the case, then there is at least
one more addend to be added. Note that, as was the case for ,
the machine needs to erase an additional one from the addend which
is done via state . It then moves back to state . If, on the other hand,

, the machine moves to the leftmost 1 of
 and halts.

TAddi

q1 0 R q2
q2 1 R q3 1 R q2
q3 0 L q6 1 L q4
q4 0 R q5 1 L q4
q5 0 R q1
q6 0 R qhalt 1 L q6

TAddi

TAdd2 Taddi

+ 1n1 + 1n2 + 1ni

N1
N2
N3

Ni

= + + 1n1 n2
= +N1 n3
= +N2 n4

⋮
= + + 1Ni−1 ni

TAdd2 TAddi
TAddi

, 1 < j ≤ iNj Ni
Nj

q2 q3
nj+1 TAdd2

nj+1
q5 q1

=Nj Ni
= + + … + + 1Ni n1 n2 ni

Turing Machines

14 Stanford Encyclopedia of Philosophy

2.2 Computable Numbers and Problems

Turing’s original paper is concerned with computable (real) numbers. A
(real) number is Turing computable if there exists a Turing machine which
computes an arbitrarily precise approximation to that number. All of the
algebraic numbers (roots of polynomials with algebraic coefficients) and
many transcendental mathematical constants, such as e and are Turing-
computable. Turing gave several examples of classes of numbers
computable by Turing machines (see section 10 Examples of large classes
of numbers which are computable of Turing 1936–7) as a heuristic
argument showing that a wide diversity of classes of numbers can be
computed by Turing machines.

One might wonder however in what sense computation with numbers, viz.
calculation, captures non-numerical but computable problems and so how
Turing machines capture all general and effective procedures which
determine whether something is the case or not. Examples of such
problems are:

“decide for any given x whether or not x denotes a prime”
“decide for any given x whether or not x is the description of a Turing
machine”.

In general, these problems are of the form:

“decide for any given x whether or not x has property X”

An important challenge of both theoretical and concrete advances in
computing (often at the interface with other disciplines) has become the
problem of providing an interpretation of X such that it can be tackled
computationally. To give just one concrete example, in daily
computational practices it might be important to have a method to decide

π

Liesbeth De Mol

Winter 2021 Edition 15

for any digital “source” whether or not it can be trusted and so one needs a
computational interpretation of trust.

The characteristic function of a predicate is a function which has the value
TRUE or FALSE when given appropriate arguments. In order for such
functions to be computable, Turing relied on Gödel’s insight that these
kind of problems can be encoded as a problem about numbers (See
Gödel’s incompleteness theorem and the next Sec. 2.3) In Turing’s
wording:

It is the possibility of coding the “general process” problems as numerical
problems that is essential to Turing’s construction of the universal Turing
machine and its use within a proof that shows there are problems that
cannot be computed by a Turing machine.

2.3 Turing’s Universal Machine

The universal Turing machine which was constructed to prove the
uncomputability of certain problems, is, roughly speaking, a Turing
machine that is able to compute what any other Turing machine computes.
Assuming that the Turing machine notion fully captures computability

The expression “there is a general process for determining …” has
been used [here] […] as equivalent to “there is a machine which
will determine …”. This usage can be justified if and only if we
can justify our definition of “computable”. For each of these
“general process” problems can be expressed as a problem
concerning a general process for determining whether a given
integer n has a property [e.g. might mean “n is
satisfactory” or “n is the Gödel representation of a provable
formula”], and this is equivalent to computing a number whose n-
th figure is 1 if is true and 0 if it is false. (1936–7: 248)

G(n) G(n)

G(n)

Turing Machines

16 Stanford Encyclopedia of Philosophy

(and so that Turing’s thesis is valid), it is implied that anything which can
be “computed”, can also be computed by that one universal machine.
Conversely, any problem that is not computable by the universal machine
is considered to be uncomputable.

This is the rhetorical and theoretical power of the universal machine
concept, viz. that one relatively simple formal device captures all “the
possible processes which can be carried out in computing a number”
(Turing 1936–7). It is also one of the main reasons why Turing has been
retrospectively identified as one of the founding fathers of computer
science (see Section 5).

So how to construct a universal machine U out of the set of basic
operations we have at our disposal? Turing’s approach is the construction
of a machine U which is able to (1) ‘understand’ the program of any other
machine and, based on that “understanding”, (2) ‘mimic’ the behavior
of . To this end, a method is needed which allows to treat the program
and the behavior of interchangeably since both aspects are manipulated
on the same tape and by the same machine. This is achieved by Turing in
two basic steps: the development of (1) a notational method (2) a set of
elementary functions which treats that notation—independent of whether
it is formalizing the program or the behavior of —as text to be
compared, copied down, erased, etc. In other words, Turing develops a
technique that allows to treat program and behavior on the same level.

2.3.1 Interchangeability of program and behavior: a notation

Given some machine , Turing’s basic idea is to construct a machine
which, rather than directly printing the output of , prints out the
successive complete configurations or instantaneous descriptions of . In
order to achieve this, :

Tn
Tn

Tn

Tn

Tn T ′
n

Tn
Tn

T ′
n

Liesbeth De Mol

Winter 2021 Edition 17

In other words, prints out the successive complete configurations of
by having the program of written on its tape. Thus, Turing needs a
notational method which makes it possible to ‘capture’ two different
aspects of a Turing machine on one and the same tape in such a way they
can be treated by the same machine, viz.:

(1) its description in terms of what it should do—the quintuple notation
(2) its description in terms of what it is doing—the complete

configuration notation

Thus, a first and perhaps most essential step, in the construction of U are
the quintuple and complete configuration notation and the idea of putting
them on the same tape. More particularly, the tape is divided into two
regions which we will call the A and B region here. The A region contains
a notation of the ‘program’ of and the B region a notation for the
successive complete configurations of . In Turing’s paper they are
separated by an additional symbol “::”.

To simplify the construction of U and in order to encode any Turing
machine as a unique number, Turing develops a third notation which
permits to express the quintuples and complete configurations with letters
only. This is determined by [Note that we use Turing’s original encoding.
Of course, there is a broad variety of possible encodings, including binary
encodings]:

Replacing each state in a quintuple of by

[…] could be made to depend on having the rules of operation […]
of [] written somewhere within itself […] each step could be
carried out by referring to these rules. (Turing 1936–7: 242)

Tn

T ′
n Tn

Tn

Tn
Tn

qi Tn

D ,A … A
⏟i

Turing Machines

18 Stanford Encyclopedia of Philosophy

so, for instance becomes .
Replacing each symbol in a quintuple of by

so, for instance, becomes .

Using this method, each quintuple of some Turing machine can be
expressed in terms of a sequence of capital letters and so the ‘program’ of
any machine can be expressed by the set of symbols A, C, D, R, L, N
and ;. This is the so-called Standard Description (S.D.) of a Turing
machine. Thus, for instance, the S.D. of is:

;DADDRDAA;DADCDRDAA;DAADDCRDA;DAADCDC
RDA

This is, essentially, Turing’s version of Gödel numbering. Indeed, as
Turing shows, one can easily get a numerical description representation or
Description Number (D.N.) of a Turing machine by replacing:

“A” by “1”
“C” by “2”
“D” by “3”
“L” by “4”
“R” by “5”
“N” by “6”
“;” by “7”

Thus, the D.N. of is:

7313353117313135311731133153173113131531

q3 DAAA
Sj Tn

D ,C … C
⏟j

S1 DC

Tn

Tn

TSimple

Tn

TSimple

Liesbeth De Mol

Winter 2021 Edition 19

Note that every machine has a unique D.N.; a D.N. represents one and
one machine only.

Clearly, the method used to determine the of some machine can
also be used to write out the successive complete configurations of .
Using “:” as a separator between successive complete configurations, the
first few complete configurations of are:

:DAD:DDAAD:DDCDAD:DDCDDAAD:DDCDDCDAD

2.3.2 Interchangeability of program and behavior: a basic set of
functions

Having a notational method to write the program and successive complete
configurations of some machine on one and the same tape of some
other machine is the first step in Turing’s construction of U. However,
U should also be able to “emulate” the program of as written in region
A so that it can actually write out its successive complete configurations in
region B. Moreover it should be possible to “take out and exchange[…]
[the rules of operations of some Turing machine] for others” (Turing
1936–7: 242). Viz., it should be able not just to calculate but also to
compute, an issue that was also dealt with by others such as Church,
Gödel and Post using their own formal devices. It should, for instance, be
able to “recognize” whether it is in region A or B and it should be able to
determine whether or not a certain sequence of symbols is the next state
which needs to be executed.

This is achieved by Turing through the construction of a sequence of
Turing computable problems such as:

Finding the leftmost or rightmost occurrence of a sequence of
symbols

Tn

S. D. Tn
Tn

TSimple

Tn
T ′

n
Tn

qi

Turing Machines

20 Stanford Encyclopedia of Philosophy

Marking a sequence of symbols by some symbol a (remember that
Turing uses two kinds of alternating squares)
Comparing two symbol sequences
Copying a symbol sequence

Turing develops a notational technique, called skeleton tables, for these
functions which serves as a kind of shorthand notation for a complete
Turing machine table but can be easily used to construct more complicated
machines from previous ones. The technique is quite reminiscent of the
recursive technique of composition (see: recursive functions).

To illustrate how such functions are Turing computable, we discuss one
such function in more detail, viz. the compare function. It is constructed
on the basis of a number of other Turing computable functions which are
built on top of each other. In order to understand how these functions
work, remember that Turing used a system of alternating F and E-squares
where the F-squares contain the actual quintuples and complete
configurations and the E-squares are used as a way to mark off certain
parts of the machine tape. For the comparing of two sequences and ,
each symbol of will be marked by some symbol a and each symbol of

 will be marked by some symbol b.

Turing defined nine different functions to show how the compare function
can be computed with Turing machines:

FIND : this machine function searches for the leftmost occurrence
of a. If a is found, the machine moves to state else it moves to state

. This is achieved by having the machine first move to the
beginning of the tape (indicated by a special mark) and then to have it
move right until it finds a or reaches the rightmost symbol on the
tape.

FINDL : the same as FIND but after a has been found, the

S1 S2
S1

S2

(, , a)qi qj
qi

qj

(, , a)qi qj

Liesbeth De Mol

Winter 2021 Edition 21

machine moves one square to the left. This is used in functions which
need to compute on the symbols in F-squares which are marked by
symbols a in the E-squares.

ERASE : the machine computes FIND. If a is found, it erases a
and goes to state else it goes to state

ERASE_ALL : the machines
computes ERASE on a repeatedly until all a’s have been erased.
Then it moves to .

EQUAL : the machine checks whether or not the current symbol
is a. If yes, it moves to state else it moves to state

CMP_XY : whatever the
current symbol x, the machine computes FINDL on b (and so looks
for the symbol marked by b). If there is a symbol y marked with b,
the machine computes on x and y, else, the machine goes to
state . In other words, CMP_XY compares whether the
current symbol is the same as the leftmost symbol marked b.

COMPARE_MARKED : the machine checks whether the
leftmost symbols marked a and b respectively are the same. If there is
no symbol marked a nor b, the machine goes to state ; if there is a
symbol marked a and one marked b and they are the same, the
machine goes to state , else the machine goes to state . The
function is computed as

: the same as COMPARE_MARKED
but when the symbols marked a and b are the same, the marks a and
b are erased. This is achieved by computing first on a and
then on b.

 The machine compares the sequences A
and B marked with a and b respectively. This is done by repeatedly
computing COMPARE_ERASE on a and b. If A and B are equal, all

(, , a)qi qj
qi qj

(, a) = ERASE(ERASE_ALL, , a)qj qj

qj
(, , a)qi qj

qi qj
(, , b) = FINDL(EQUAL(, , x), , b)qi qj qi qj qj

EQUAL
qj (, , b)qi qj

(, , , a, b)qi qj qn

qn

qi qj

FINDL(CMP_XY(, , b), FIND(, , b), a)qi qj qj qn
COMPARE_ERASE(, , a, b)qiqj qn

ERASE

COMPARE_ALL(, , a, b)qj qn

Turing Machines

22 Stanford Encyclopedia of Philosophy

a’s and b’s will have been erased and the machine moves to state ,
else, it will move to state . It is computed by

and so by recursively calling .

In a similar manner, Turing defines the following functions:

: copy the sequence of symbols marked with a’s to the right
of the last complete configuration and erase the marks.

: copy down the sequences marked to to
the right of the last complete configuration and erase all marks .

: replace all letters a by b
: mark the first configuration to the

right of the machine’s head with the letter a.
: find the rightmost symbol a.

Using the basic functions COPY, REPLACE and COMPARE, Turing
constructs a universal Turing machine.

Below is an outline of the universal Turing machine indicating how these
basic functions indeed make possible universal computation. It is assumed
that upon initialization, U has on its tape the S.D. of some Turing machine

. Remember that Turing uses the system of alternating F and E-squares
and so, for instance, the S.D. of will be written on the tape of U as:

;_D_A_D_D_R_D_A_A_;_D_A_D_C_D_R_D_A_A_;_D_
A_A_D_D_C_R_D_A_;_D_A_A_D_C_D_C_R_D_A_

where “_” indicates an unmarked E-square.

INIT: To the right of the rightmost quintuple of T_n, U prints
::_:_D_A_, where _ indicates an unmarked E-square.

qj
qn

COMPARE_ERASE(COMPARE_ALL(, , a, b), , , a, b)qj qn qj qn

COMPARE_ALL

COPY(, a)qi

(, , , … ,)COPYn qi a1 a2 an a1 an
ai

REPLACE(, a, b)qi
MARK_NEXT_CONFIG(, a)qi qiSj

FIND_RIGHT(, a)qi

Tn
TSimple

Liesbeth De Mol

Winter 2021 Edition 23

FIND_NEXT_STATE: The machine first marks (1) with y the
configuration of the rightmost (and so last) complete
configuration computed by U in the B part of the tape and (2) with x
the configuration of the leftmost quintuple which is not
preceded by a marked (with the letter z) semicolon in the A part of the
tape. The two configurations are compared. If they are identical, the
machine moves to MARK_OPERATIONS, if not, it marks the
semicolon preceding with z and goes to
FIND_NEXT_STATE. This is easily achieved using the function
COMPARE_ALL which means that, whatever the outcome of the
comparison, the marks x and y will be erased. For instance, suppose
that and that the last complete configuration of as
computed by U is:

Then U will move to region A and determine that the corresponding
quintuple is:

MARK_OPERATIONS: The machine U marks the operations that it
needs to execute in order to compute the next complete configuration
of . The printing and move (L,R, N) operations are marked with u
and the next state with y. All marks z are erased. Continuing with our
example, U will mark as follows:

MARK_COMPCONFIG: The last complete configuration of as
computed by U is marked into four regions: the configuration

qCC,iSCC,j

qq,mSq,n

qq,mSq,n

=Tn TSimple TSimple

: _D_⏟S0

D_C_
⏟S1

D_⏟S0

D_A_A_
q2

D_⏟S0

(1)

D_A_A_
q2

D_⏟S0

D_C_
⏟S1

R_⏟D_A_⏟q1

(2)

Tn

(2)
D_A_A_D_DuCuRuDyAy

Tn

Turing Machines

24 Stanford Encyclopedia of Philosophy

 itself is left unmarked; the symbol just preceding it is
marked with an x and the remaining symbols to the left or marked
with v. Finally, all symbols to the right, if any, are marked with w and
a “:” is printed to the right of the rightmost symbol in order to
indicate the beginning of the next complete configuration of to be
computed by U. Continuing with our example, will be marked as
follows by U:

U then goes to PRINT

PRINT. It is determined if, in the instructions that have been marked
in MARK_OPERATIONS, there is an operation Print 0 or Print 1. If
that is the case, respectively is printed to the right of the last
complete configuration. This is not a necessary function but Turing
insisted on having U print out not just the (coded) complete
configurations computed by but also the actual (binary) real
number computed by .

PRINT_COMPLETE_CONFIGURATION. U prints the next
complete configuration and erases all marks u, v, w, x, y. It then
returns to FIND_NEXT_STATE. U first searches for the rightmost
letter u, to check which move is needed (R, L, N) and erases the mark
u for R, L, N. Depending on the value L, R or N will then write down
the next complete configuration by applying COPY to u, v, w, x, y.
The move operation (L, R, N) is accounted for by the particular
combination of u, v, w, x, y:

qCC,iSCC,j

Tn
(1)

: _Dv⏟S0

DvCv⏟S1

Dx⏟S0

D_A_A_
q2

D_⏟S0

0 : 1 :

Tn
Tn

5

When ~L :
When ~R :
When ~N :

(FIND_NEXT_STATE, v, y, x, u, w)COPY5
(FIND_NEXT_STATE, v, x, u, y, w)COPY5
(FIND_NEXT_STATE, v, x, y, u, w)COPY5

Liesbeth De Mol

Winter 2021 Edition 25

Following our example, since needs to move right, the new
rightmost complete configursiation of written on the tape of U
is:

Since we have that for this complete configuration the square being
scanned by is one that was not included in the previous
complete configuration (viz. has reached beyond the rightmost
previous point) the complete configuration as written out by U is in
fact incomplete. This small defect was corrected by Post (Post 1947)
by including an additional instruction in the function used to mark the
complete configuration in the next round.

As is clear, Turing’s universal machine indeed requires that program and
‘data’ produced by that program are manipulated interchangeably, viz. the
program and its productions are put next to each other and treated in the
same manner, as sequences of letters to be copied, marked, erased and
compared.

Turing’s particular construction is quite intricate with its reliance on the F
and E-squares, the use of a rather large set of symbols and a rather arcane
notation used to describe the different functions discussed above. Since
1936 several modifications and simplifications have been implemented.
The removal of the difference between F and E-squares was already
discussed in Section 1.2 and it was proven by Shannon that any Turing
machine, including the universal machine, can be reduced to a binary
Turing machine (Shannon 1956). Since the 1950s, there has been quite
some research on what could be the smallest possible universal devices
(with respect to the number of states and symbols) and quite some “small”
universal Turing machines have been found. These results are usually

(FIND_NEXT_STATE, v, x, y, u, w)5

TSimple
TSimple

D_⏟S0

D_C_
⏟S1

D_⏟S0

D_C_
⏟S1

D_A_⏟q1

TSimple
TSimple

Turing Machines

26 Stanford Encyclopedia of Philosophy

achieved by relying on other equivalent models of computability such as,
for instance, tag systems. For a survey on research into small universal
devices (see Margenstern 2000; Woods & Neary 2009).

2.4 The Halting Problem and the Entscheidungsproblem

As explained, the purpose of Turing’s paper was to show that the
Entscheidungsproblem for first-order logic is not computable. The same
result was achieved independently by Church (1936a, 1936b) using a
different kind of formal device which is logically equivalent to a Turing
machine (see Sec. 4). The result went very much against what Hilbert had
hoped to achieve with his finitary and formalist program. Indeed, next to
Gödel’s incompleteness results, they broke much of Hilbert’s dream of
making mathematics void of Ignorabimus and which was explicitly
expressed in the following words of Hilbert:

Note that the solvability Hilbert is referring to here concerns solvability of
mathematical problems in general and not just mechanically solvable. It is
shown however in Mancosu et al. 2009 (p. 94), that this general aim of
solving every mathematical problem, underpins two particular convictions
of Hilbert namely that (1) the axioms of number theory are complete and
(2) that there are no undecidable problems in mathematics.

The true reason why Comte could not find an unsolvable problem,
lies in my opinion in the assertion that there exists no unsolvable
problem. Instead of the stupid Ignorabimus, our solution should be:
We must know. We shall know. (1930: 963) [translation by the
author]

Liesbeth De Mol

Winter 2021 Edition 27

2.4.1 Direct and indirect proofs of uncomputable decision
problems

So, how can one show, for a particular decision problem , that it is not
computable? There are two main methods:

Indirect proof: take some problem which is already known to be
uncomputable and show that the problem “reduces” to .

Direct proof: prove the uncomputability of directly by assuming some
version of the Church-Turing thesis.

Today, one usually relies on the first method while it is evident that in the
absence of a problem , Turing but also Church and Post (see Sec.
4) had to rely on the direct approach.

The notion of reducibility has its origins in the work of Turing and Post
who considered several variants of computability (Post 1947; Turing
1939). The concept was later appropriated in the context of computational
complexity theory and is today one of the basic concepts of both
computability and computational complexity theory (Odifreddi 1989;
Sipser 1996). Roughly speaking, a reduction of a problem to a problem

 comes down to providing an effective procedure for translating every
instance of the problem to an instance of in such a way that
an effective procedure for solving also yields an effective procedure
for solving . In other words, if reduces to then, if is
uncomputable so is . Note that the reduction of one problem to another
can also be used in decidability proofs: if reduces to and is
known to be computable then so is .

In the absence of D a very different approach was required and
Church, Post and Turing each used more or less the same approach to this
end (Gandy 1988). First of all, one needs a formalism which captures the

Di

Duncomp
Di

Di

Duncomp

Di
Dj

di,m Di dj,n Dj
dj,n

di,m Di Dj Di
Dj

Di Dj Dj
Di

uncomp

Turing Machines

28 Stanford Encyclopedia of Philosophy

notion of computability. Turing proposed the Turing machine formalism to
this end. A second step is to show that there are problems that are not
computable within the formalism. To achieve this, a uniform process U
needs to be set-up relative to the formalism which is able to compute
every computable number. One can then use (some form of)
diagonalization in combination with U to derive a contradiction.
Diagonalization was introduced by Cantor to show that the set of real
numbers is “uncountable” or not denumerable. A variant of the method
was used also by Gödel in the proof of his first incompleteness theorem.

2.4.2 Turing’s basic problem CIRC?, PRINT? and the
Entscheidungsproblem

Recall that in Turing’s original version of the Turing machine, the
machines are computing real numbers. This implied that a “well-
behaving” Turing machine should in fact never halt and print out an
infinite sequence of figures. Such machines were identified by Turing as
circle-free. All other machines are called circular machines. A number n
which is the D.N. of a circle-free machine is called satisfactory.

This basic difference is used in Turing’s proof of the uncomputability of:

The proof of the uncomputability of CIRC? uses the construction of a
hypothetical and circle-free machine which computes the diagonal
sequence of the set of all computable numbers computed by the circle-free
machines. Hence, it relies for its construction on the universal Turing
machine and a hypothetical machine that is able to decide CIRC? for each
number n given to it. It is shown that the machine becomes a
circular machine when it is provided with its own description number,

CIRC? The problem to decide for every number n whether or not
it is satisfactory

Tdecide

Tdecide

Liesbeth De Mol

Winter 2021 Edition 29

hence the assumption of a machine which is capable of solving CIRC?
must be false.

Based on the uncomputability of CIRC?, Turing then shows that also
PRINT? is not computable. More particularly he shows that if PRINT?
were to be computable, also CIRC? would be decidable, viz. he rephrases
PRINT? in such a way that it becomes the problem to decide for any
machine whether or not it will print an infinity of symbols which would
amount to deciding CIRC?.

Finally, based on the uncomputability of PRINT? Turing shows that the
Entscheidungsproblem is not decidable. This is achieved by showing:

1. how for each Turing machine T, it is possible to construct a
corresponding formula T in first-order logic and

2. if there is a general method for determining whether T is provable,
then there is a general method for proving that T will ever print 0.
This is the problem PRINT? and so cannot be decidable (provided
we accept Turing’s thesis).

It thus follows from the uncomputability of PRINT?, that the
Entscheidungsproblem is not computable.

2.4.3 The halting problem

Given Turing’s focus on computable real numbers, his base decision
problem is about determining whether or not some Turing machine will
not halt and so is not quite the same as the more well-known halting
problem:

HALT? The problem to decide for every Turing machine T whether or
not T will halt.

Turing Machines

30 Stanford Encyclopedia of Philosophy

Turing’s problem PRINT? is in fact very close to HALT? (see Davis
1958: Chapter 5, Theorem 2.3).

A popular proof of HALT? goes as follows. Assume that HALT? is
computable. Then it should be possible to construct a Turing machine
which decides, for each machine and some input w for whether or
not will halt on w. Let us call this machine . More particularly, we
have:

We now define a second machine which relies on the assumption that
the machine can be constructed. More particularly, we have:

If we now set to we end up with a contradiction: if halts it means
that does not halt and vice versa. A popular but quite informal variant
of this proof was given by Christopher Strachey in the context of
programming (Strachey 1965).

2.5 Variations on the Turing machine

As is clear from Sections 1.1 and 1.2, there is a variety of definitions of the
Turing machine. One can use a quintuple or quadruple notation; one can
have different types of symbols or just one; one can have a two-way
infinite or a one-way infinite tape; etc. Several other less obvious
modifications have been considered and used in the past. These
modifications can be of two kinds: generalizations or restrictions. These

Ti Ti
Ti TH

(, w) = {TH Ti
HALT
LOOP

if halts on wTi

if loops on wTi

TD
TH

(, D. N. of) =TD Ti Ti

⎧

⎩
⎨
⎪⎪
⎪⎪

HALT

LOOP

if does not halt on its ownTi

description number
if halts on its ownTi

description number
Ti TD TD

TD

Liesbeth De Mol

Winter 2021 Edition 31

do not result in “stronger” or “weaker” models. Viz. these modified
machines compute no more and no less than the Turing computable
functions. This adds to the robustness of the Turing machine definition.

Binary machines

In his short 1936 note Post considers machines that either mark or unmark
a square which means we have only two symbols and but he did not
prove that this formulation captures exactly the Turing computable
functions. It was Shannon who proved that for any Turing machine T with
n symbols there is a Turing machine with two symbols that simulates T
(Shannon 1956). He also showed that for any Turing machine with m
states, there is a Turing machine with only two states that simulates it.

Non-erasing machines

Non-erasing machines are machines that can only overprint . In Moore
1952, it was mentioned that Shannon proved that non-erasing machines
can compute what any Turing machine computes. This result was given in
a context of actual digital computers of the 50s which relied on punched
tape (and so, for which, one cannot erase). Shannon’s result however
remained unpublished. It was Wang who published the result (Wang
1957).

Non-writing machines

It was shown by Minsky that for every Turing machine there is a non-
writing Turing machine with two tapes that simulates it.

Multiple tapes

Instead of one tape one can consider a Turing machine with multiple tapes.
This turned out the be very useful in several different contexts. For
instance, Minsky, used two-tape non-writing Turing machines to prove

S0 S1

S0

Turing Machines

32 Stanford Encyclopedia of Philosophy

that a certain decision problem defined by Post (the decision problem for
tag systems) is non-Turing computable (Minsky 1961). Hartmanis and
Stearns then, in their founding paper for computational complexity theory,
proved that any n-tape Turing machine reduces to a single tape Turing
machine and so anything that can be computed by an n-tape or multitape
Turing machine can also be computed by a single tape Turing machine,
and conversely (Hartmanis & Stearns 1965). They used multitape
machines because they were considered to be closer to actual digital
computers.

n-dimensional Turing machines

Another variant is to consider Turing machines where the tape is not one-
dimensional but n-dimensional. This variant too reduces to the one-
dimensional variant.

Non-deterministic machines

An apparently more radical reformulation of the notion of Turing machine
is that of non-deterministic Turing machines. As explained in 1.1, one
fundamental condition of Turing’s machines is the so-called determinacy
condition, viz. the idea that at any given moment, the machine’s behavior
is completely determined by the configuration or state it is in and the
symbol it is scanning. Next to these, Turing also mentions the idea of
choice machines for which the next state is not completely determined by
the state and symbol pair. Instead, some external device makes a random
choice of what to do next. Non-deterministic Turing machines are a kind
of choice machines: for each state and symbol pair, the non-deterministic
machine makes an arbitrary choice between a finite (possibly zero)
number of states. Thus, unlike the computation of a deterministic Turing
machine, the computation of a non-deterministic machine is a tree of
possible configuration paths. One way to visualize the computation of a
non-deterministic Turing machine is that the machine spawns an exact

Liesbeth De Mol

Winter 2021 Edition 33

copy of itself and the tape for each alternative available transition, and
each machine continues the computation. If any of the machines
terminates successfully, then the entire computation terminates and
inherits that machine’s resulting tape. Notice the word successfully in the
preceding sentence. In this formulation, some states are designated as
accepting states and when the machine terminates in one of these states,
then the computation is successful, otherwise the computation is
unsuccessful and any other machines continue in their search for a
successful outcome. The addition of non-determinism to Turing machines
does not alter the extent of Turing-computability. Non-determinism was
introduced for finite automata in the paper, Rabin & Scott 1959, where it is
also shown that adding non-determinism does not result in more powerful
automata. Non-deterministic Turing machines are an important model in
the context of computational complexity theory.

Weak and semi-weak machines

Weak Turing machines are machines where some word over the alphabet
is repeated infinitely often to the left and right of the input. Semi-weak
machines are machines where some word is repeated infinitely often either
to the left or right of the input. These machines are generalizations of the
standard model in which the initial tape contains some finite word
(possibly nil). They were introduced to determine smaller universal
machines. Watanabe was the first to define a universal semi-weak machine
with six states and five symbols (Watanabe 1961). Recently, a number of
researchers have determined several small weak and semi-weak universal
Turing machines (e.g., Woods & Neary 2007; Cook 2004)

Besides these variants on the Turing machine model, there are also
variants that result in models which capture, in some well-defined sense,
more than the (Turing)-computable functions. Examples of such models
are oracle machines (Turing 1939), infinite-time Turing machines

Turing Machines

34 Stanford Encyclopedia of Philosophy

(Hamkins & Lewis 2008) and accelerating Turing machines (Copeland
2002). There are various reasons for introducing such stronger models.
Some are well-known models of computability or recursion theory and are
used in the theory of higher-order recursion and relative computability
(oracle machines); others, like the accelerating machines, were introduced
in the context of supertasks and the idea of providing physical models that
“compute” functions which are not Turing-computable.

3. Philosophical Issues Related to Turing Machines

3.1 Human and Machine Computations

In its original context, Turing’s identification between the computable
numbers and Turing machines was aimed at proving that the
Entscheidungsproblem is not a computable problem and so not a so-called
“general process” problem (Turing 1936–7: 248). The basic assumption to
be made for this result is that our “intuitive” notion of computability can
be formally defined as Turing computability and so that there are no
“computable” problems that are not Turing computable. But what was
Turing’s “intuitive” notion of computability and how can we be sure that it
really covers all computable problems, and, more generally, all kinds of
computations? This is a very basic question in the philosophy of computer
science.

At the time Turing was writing his paper, the modern computer was not
developed yet and so rephrasings of Turing’s thesis which identify Turing
computability with computability by a modern computer are
interpretations rather than historically correct statements of Turing’s
thesis. The existing computing machines at the time Turing wrote his
paper, such as the differential analyzer or desk calculators, were quite
restricted in what they could compute and were used in a context of
human computational practices (Grier 2007). It is thus not surprising that

Liesbeth De Mol

Winter 2021 Edition 35

Turing did not attempt to formalize machine computation but rather
human computation and so computable problems in Turing’s paper
become computable by human means. This is very explicit in Section 9 of
Turing 1936–7 where he shows that Turing machines are a ‘natural’ model
of (human) computation by analyzing the process of human computation.
The analysis results in a kind of abstract human ‘computor’ who fulfills a
set of different conditions that are rooted in Turing’s recognition of a set of
human limitations which restrict what we can compute (of our sensory
apparatus but also of our mental apparatus). This ‘computor’ computes
(real) numbers on an infinite one-dimensional tape divided into squares
[Note: Turing assumed that the reduction of the 2-dimensional character of
the paper a human mathematician usually works on “is not essential of
computation” (Turing 1936–7: 249)]. It has the following restrictions
(Gandy 1988; Sieg 1994):

Determinacy condition D “The behaviour of the computer at any moment
is determined by the symbols which he is observing and his ‘state of
mind’ at that moment.” (Turing 1936–7: 250)

Boundedness condition B1 “there is a bound B to the number of symbols
or squares which the computer can observe at one moment. If he
wishes to observe more, he must use successive observations.”
(Turing 1936–7: 250)

Boundedness condition B2 “the number of states of mind which need be
taken into account is finite” (Turing 1936–7: 250)

Locality condition L1 “We may […] assume that the squares whose
symbols are changed are always ‘observed’ squares.” (Turing 1936–
7: 250)

Locality condition L2 “each of the new observed squares is within L
squares of an immediately previously observed square.” (Turing
1936–7: 250)

Turing Machines

36 Stanford Encyclopedia of Philosophy

It is this so-called “direct appeal to intuition” (1936–7: 249) of Turing’s
analysis and resulting model that explain why the Turing machine is today
considered by many as the best standard model of computability (for a
strong statement of this point of view, see Soare 1996). Indeed, from the
above set of conditions one can quite easily derive Turing’s machines.
This is achieved basically by analyzing the restrictive conditions into
“‘simple operations’ which are so elementary that it is not easy to imagine
them further divided” (Turing 1936–7: 250).

Note that while Turing’s analysis focuses on human computation, the
application of his identification between (human) computation and Turing
machine computation to the Entscheidungsproblem suggests that he did
not consider the possibility of a model of computation that somehow goes
“beyond” human computation and is capable of providing an effective and
general procedure which solves the Entscheidungsproblem. If that would
have been the case, he would not have considered the
Entscheidungsproblem to be uncomputable.

The focus on human computation in Turing’s analysis of computation, has
led researchers to extend Turing’s analysis to computation by physical
devices. This results in (versions of) the physical Church-Turing thesis.
Robin Gandy focused on extending Turing’s analysis to discrete
mechanical devices (note that he did not consider analog machines). More
particularly, like Turing, Gandy starts from a basic set of restrictions of
computation by discrete mechanical devices and, on that basis, develops a
new model which he proved to be reducible to the Turing machine model.
This work is continued by Wilfried Sieg who proposed the framework of
Computable Dynamical Systems (Sieg 2008). Others have considered the
possibility of “reasonable” models from physics which “compute”
something that is not Turing computable. See for instance Aaronson,
Bavarian, & Gueltrini 2016 (Other Internet Resources) in which it is
shown that if closed timelike curves would exist, the halting problem

Liesbeth De Mol

Winter 2021 Edition 37

would become solvable with finite resources. Others have proposed
alternative models for computation which are inspired by the Turing
machine model but capture specific aspects of current computing practices
for which the Turing machine model is considered less suited. One
example here are the persistent Turing machines intended to capture
interactive processes. Note however that these results do not show that
there are “computable” problems that are not Turing computable. These
and other related proposals have been considered by some authors as
reasonable models of computation that somehow compute more than
Turing machines. It is the latter kind of statements that became affiliated
with research on so-called hypercomputation resulting in the early 2000s
in a rather fierce debate in the computer science community, see, e.g.,
Teuscher 2004 for various positions.

3.2 Thesis, Definition, Axioms or Theorem

As is clear, strictly speaking, Turing’s thesis is not provable, since, in its
original form, it is a claim about the relationship between a formal and a
vague or intuitive concept. By consequence, many consider it as a thesis or
a definition. The thesis would be refuted if one would be able to provide
an intuitively acceptable effective procedure for a task that is not Turing-
computable. This far, no such counterexample has been found. Other
independently defined notions of computability based on alternative
foundations, such as recursive functions and abacus machines have also
been shown to be equivalent to Turing computability. These equivalences
between quite different formulations indicate that there is a natural and
robust notion of computability underlying our understanding. Given this
apparent robustness of our notion of computability, some have proposed to
avoid the notion of a thesis altogether and instead propose a set of axioms
used to sharpen the informal notion. There are several approaches, most
notably, an approach of structural axiomatization where computability

Turing Machines

38 Stanford Encyclopedia of Philosophy

itself is axiomatized (Sieg 2008) and one whereby an axiomatization is
given from which the Church-Turing thesis can be derived (Dershowitz &
Gurevich 2008).

4. Alternative Historical Models of Computability

Besides the Turing machine, several other models were introduced
independently of Turing in the context of research into the foundation of
mathematics which resulted in theses that are logically equivalent to
Turing’s thesis. For each of these models it was proven that they capture
the Turing computable functions. Note that the development of the modern
computer stimulated the development of other models such as register
machines or Markov algorithms. More recently, computational approaches
in disciplines such as biology or physics, resulted in bio-inspired and
physics-inspired models such as Petri nets or quantum Turing machines. A
discussion of such models, however, lies beyond the scope of this entry.

4.1 General Recursive Functions

The original formulation of general recursive functions can be found in
Gödel 1934, which built on a suggestion by Herbrand. In Kleene 1936 a
simpler definition was given and in Kleene 1943 the standard form which
uses the so-called minimization or -operator was introduced. For more
information, see the entry on recursive functions.

Church used the definition of general recursive functions to state his
thesis:

μ

Church’s thesis Every effectively calculable function is general
recursive

Liesbeth De Mol

Winter 2021 Edition 39

In the context of recursive function one uses the notion of recursive
solvability and unsolvability rather than Turing computability and
uncomputability. This terminology is due to Post (1944).

4.2 λ-Definability

Church’s λ-calculus has its origin in the papers (Church 1932, 1933) and
which were intended as a logical foundation for mathematics. It was
Church’s conviction at that time that this different formal approach might
avoid Gödel incompleteness (Sieg 1997: 177). However, the logical
system proposed by Church was proven inconsistent by his two PhD
students Stephen C. Kleene and Barkley Rosser and so they started to
focus on a subpart of that logic which was basically the λ-calculus.
Church, Kleene and Rosser started to λ-define any calculable function they
could think of and quite soon Church proposed to define effective
calculability in terms of λ-definability. However, it was only after Church,
Kleene and Rosser had established that general recursiveness and λ-
definability are equivalent that Church announced his thesis publicly and
in terms of general recursive functions rather than λ-definability (Davis
1982; Sieg 1997).

In λ-calculus there are only two types of symbols. The three primitive
symbols λ, (,) also called the improper symbols, and an infinite list of
variables. There are three rules to define the well-formed formulas of λ-
calculus, called λ-formulas.

1. The λ-formulas are first of all the variables themselves.
2. If P is a λ-formula containing x as a free variable then is also a
λ-formula. The λ-operator is used to bind variables and it thus
converts an expression containing free variables into one that denotes
a function

3. If M and N are λ-formulas then so is {M}(N), where {M}(N) is to be

λx[P]

Turing Machines

40 Stanford Encyclopedia of Philosophy

understood as the application of the function M to N.

The λ-formulas, or well-formed formulas of λ-calculus are all and only
those formulas that result from (repeated) application of these three rules.

There are three operations or rules of conversion. Let us define as
standing for the formula that results by substitution of N for x in M.

1. Reduction. To replace any part of a formula by
provided that the bound variables of M are distinct both from x and
from the free variables of N. For example reduces to

2. Expansion To replace any part of a formula by
provided that is well-formed and the bound variables of M
are distinct both from x and from the free variables in N. For
example, can be expanded to

3. Change of bound variable To replace any part M of a formula by
 provided that x is not a free variable of M and y does not occur

in M. For example changing to

Church introduces the following abbreviations to define the natural
numbers in λ-calculus:

Using this definition, it is possible to λ-define functions over the positive
integers. A function F of one positive integer is λ-definable if we can find
a λ-formula F, such that if and m and n are λ-formulas standing
for the integers m and n, then the λ-formula can be converted to n
by applying the conversion rules of λ-calculus. Thus, for example, the

M|Sx
N

{λx[M]}(N) M|Sx
N

{λx[]}(2)x2 22
M|Sx

N {λx[M]}(N)
((λxM)N)

22 {λx[]}(2)x2

M|Sxy
{λx[]}x2 {λy[]}y2

1 → λyx. yx,
2 → λyx. y(yx),
3 → λyx. y(y(yx)),
…

F(m) = n
{F}(m)

Liesbeth De Mol

Winter 2021 Edition 41

successor function S, first introduced by Church, can be λ-defined as
follows:

To give an example, applying S to the λ-formula standing for 2, we get:

Today, λ-calculus is considered to be a basic model in the theory of
programming.

4.3 Post Production Systems

Around 1920–21 Emil Post developed different but related types of
production systems in order to develop a syntactical form which would
allow him to tackle the decision problem for first-order logic. One of these
forms are Post canonical systems C which became later known as Post
production systems.

A canonical system consists of a finite alphabet , a finite set of initial
words , ,…, and a finite set of production rules of the
following form:

S → λabc. b(abc)

(λabc. b(abc))(λyx. y(yx))
→ λbc. b((λyx. y(yx))bc)

→ λbc. b((λx. b(bx))c)
→ λbc. b(b(bc))

Σ
W0,0 W0,1 W0,n

Turing Machines

42 Stanford Encyclopedia of Philosophy

The symbols g are a kind of metasymbols: they correspond to actual
sequences of letters in actual productions. The symbols P are the
operational variables and so can represent any sequence of letters in a
production. So, for instance, consider a production system over the
alphabet with initial word:

and the following production rule:

Then, starting with , there are three possible ways to apply the
production rule and in each application the variables will have
different values but the values of the g’s are fixed. Any set of finite
sequences of words that can be produced by a canonical system is called a
canonical set.

A special class of canonical forms defined by Post are normal systems. A
normal system N consists of a finite alphabet , one initial word
and a finite set of production rules, each of the following form:

…g11Pi11
g12Pi12

g1m1 Pi1m1
g1(+1)m1

…g21Pi21
g22Pi22

g2m2 Pi2m2
g2(+1)m2

… … … … … … … … … … …
…gk1Pik1

gk2Pik2
gkmk

Pikmk
gk(+1)mk

produce
…g1Pi1 g2Pi2 gmPim g(m+1)

Σ = {a, b}
= ababaaabbaabbaabbabaW0

bbP1,1 P1,2
produces

aaP1,3 P1,4

W0
P1,i

Σ ∈W0 Σ∗

Liesbeth De Mol

Winter 2021 Edition 43

Any set of finite sequences of words that can be produced by a normal
system is called a normal set. Post was able to show that for any canonical
set C over some alphabet there is a normal set N over an alphabet
with such that . It was his conviction that (1) any set of
finite sequences that can be generated by finite means can be generated by
canonical systems and (2) the proof that for every canonical set there is a
normal set which contains it, which resulted in Post’s thesis I:

Post realized that “[for the thesis to obtain its full generality] a complete
analysis would have to be made of all the possible ways in which the
human mind could set up finite processes for generating sequences” (Post
1965: 408) and it is quite probable that the formulation 1 given in Post
1936 and which is almost identical to Turing’s machines is the result of
such an analysis.

Post production systems became important formal devices in computer
science and, more particularly, formal language theory (Davis 1989;
Pullum 2011).

Pgi

produces
Pg′

i

Σ Δ
Σ ⊆ Δ C = N ∩ Σ∗

Post’s thesis I (Davis 1982) Every set of finite sequences of letters
that can be generated by finite processes can also be generated by
normal systems. More particularly, any set of words on an alphabet

 which can be generated by a finite process is of the form
, with N a normal set.

Σ
N ∩ Σ∗

Turing Machines

44 Stanford Encyclopedia of Philosophy

4.4 Formulation 1

In 1936 Post published a short note from which one can derive Post’s
second thesis (De Mol 2013):

Formulation 1 is very similar to Turing machines but the ‘program’ is
given as a list of directions which a human worker needs to follow. Instead
of a one-way infinite tape, Post’s ‘machine’ consists of a two-way infinite
symbol space divided into boxes. The idea is that a worker is working in
this symbol space, being capable of a set of five primitive acts (mark a
box, unmark a box, move one box to the left, move one box to
the right, determining whether the box he is in is marked or
unmarked), following a finite set of directions ,…, where each
direction always has one of the following forms:

A. Perform one of the operations (–) and go to instruction
B. Perform operation and according as the box the worker is in is

marked or unmarked follow direction or .
C. Stop.

Post also defined a specific terminology for his formulation 1 in order to
define the solvability of a problem in terms of formulation 1. These
notions are applicability, finite-1-process, 1-solution and 1-given. Roughly
speaking these notions assure that a decision problem is solvable with
formulation 1 on the condition that the solution given in the formalism
always terminates with a correct solution.

Post’s thesis II Solvability of a problem in the intuitive sense
coincides with solvability by formulation 1

O1
O2 O3 O4

O5
d1 dn

di

O1 O4 dj
O5

dj′ dj″

Liesbeth De Mol

Winter 2021 Edition 45

5. Impact of Turing Machines on Computer Science

Turing is today one of the most celebrated figures of computer science.
Many consider him as the father of computer science and the fact that the
main award in the computer science community is called the Turing award
is a clear indication of that (Daylight 2015). This was strengthened by the
Turing centenary celebrations from 2012, which were largely coordinated
by S. Barry Cooper. This resulted not only in an enormous number of
scientific events around Turing but also a number of initiatives that
brought the idea of Turing as the father of computer science also to the
broader public (Bullynck, Daylight, & De Mol 2015). Amongst Turing’s
contributions which are today considered as pioneering, the 1936 paper on
Turing machines stands out as the one which has the largest impact on
computer science. However, recent historical research shows also that one
should treat the impact of Turing machines with great care and that one
should be careful in retrofitting the past into the present.

5.1 Impact on Theoretical Computer Science

Today, the Turing machine and its theory are part of the theoretical
foundations of computer science. It is a standard reference in research on
foundational questions such as:

What is an algorithm?
What is a computation?
What is a physical computation?
What is an efficient computation?
etc.

It is also one of the main models for research into a broad range of
subdisciplines in theoretical computer science such as: variant and
minimal models of computability, higher-order computability,

Turing Machines

46 Stanford Encyclopedia of Philosophy

computational complexity theory, algorithmic information theory, etc.
This significance of the Turing machine model for theoretical computer
science has at least two historical roots.

First of all, there is the continuation of the work in mathematical logic
from the 1920s and 1930s by people like Martin Davis—who is a student
of Post and Church—and Kleene. Within that tradition, Turing’s work was
of course well-known and the Turing machine was considered as the best
model of computability given. Both Davis and Kleene published a book in
the 1950s on these topics (Kleene 1952; Davis 1958) which soon became
standard references not just for early computability theory but also for
more theoretical reflections in the late 1950s and 1960s on computing.

Secondly, one sees that in the 1950s there is a need for theoretical models
to reflect on the new computing machines, their abilities and limitations
and this in a more systematic manner. It is in that context that the
theoretical work already done was picked up. One important development
is automata theory in which one can situate, amongst others, the
development of other machine models like the register machine model or
the Wang B machine model which are, ultimately, rooted in Turing’s and
Post’s machines; there are the minimal machine designs discussed in
Section 5.2; and there is the use of Turing machines in the context of what
would become the origins of formal language theory, viz the study of
different classes of machines with respect to the different “languages” they
can recognize and so also their limitations and strengths. It are these more
theoretical developments that contributed to the establishment of
computational complexity theory in the 1960s. Of course, besides Turing
machines, other models also played and play an important role in these
developments. Still, within theoretical computer science it is mostly the
Turing machine which remains the model, even today. Indeed, when in
1965 one of the founding papers of computational complexity theory

Liesbeth De Mol

Winter 2021 Edition 47

(Hartmanis & Stearns 1965) is published, it is the multitape Turing
machine which is introduced as the standard model for the computer.

5.2 Turing Machines and the Modern Computer

In several accounts, Turing has been identified not just as the father of
computer science but as the father of the modern computer. The classical
story for this more or less goes as follows: the blueprint of the modern
computer can be found in von Neumann’s EDVAC design and today
classical computers are usually described as having a so-called von
Neumann architecture. One fundamental idea of the EDVAC design is the
so-called stored-program idea. Roughly speaking this means the storage of
instructions and data in the same memory allowing the manipulation of
programs as data. There are good reasons for assuming that von Neumann
knew the main results of Turing’s paper (Davis 1988). Thus, one could
argue that the stored-program concept originates in Turing’s notion of the
universal Turing machine and, singling this out as the defining feature of
the modern computer, some might claim that Turing is the father of the
modern computer. Another related argument is that Turing was the first
who “captured” the idea of a general-purpose machine through his notion
of the universal machine and that in this sense he also “invented” the
modern computer (Copeland & Proudfoot 2011). This argument is then
strengthened by the fact that Turing was also involved with the
construction of an important class of computing devices (the Bombe) used
for decrypting the German Enigma code and later proposed the design of
the ACE (Automatic Computing Engine) which was explicitly identified
as a kind of physical realization of the universal machine by Turing
himself:

Some years ago I was researching on what might now be described
as an investigation of the theoretical possibilities and limitations of
digital computing machines. […] Machines such as the ACE may

Turing Machines

48 Stanford Encyclopedia of Philosophy

Note however that Turing already knew the ENIAC and EDVAC designs
and proposed the ACE as a kind of improvement on that design (amongst
others, it had a simpler hardware architecture).

These claims about Turing as the inventor and/or father of the computer
have been scrutinized by some historians of computing (Daylight 2014;
Haigh 2013; Haigh 2014; Mounier-Kuhn 2012), mostly in the wake of the
Turing centenary and this from several perspectives. Based on that
research it is clear that claims about Turing being the inventor of the
modern computer give a distorted and biased picture of the development
of the modern computer. At best, he is one of the many who made a
contribution to one of the several historical developments (scientific,
political, technological, social and industrial) which resulted, ultimately, in
(our concept of) the modern computer. Indeed, the “first” computers are
the result of a wide number of innovations and so are rooted in the work of
not just one but several people with diverse backgrounds and viewpoints.

In the 1950s then the (universal) Turing machine starts to become an
accepted model in relation to actual computers and is used as a tool to
reflect on the limits and potentials of general-purpose computers by both
engineers, mathematicians and logicians. More particularly, with respect
to machine designs, it was the insight that only a few number of operations
were required to built a general-purpose machine which inspired in the
1950s reflections on minimal machine architectures. Frankel, who
(partially) constructed the MINAC stated this as follows:

be regarded as practical versions of this same type of machine.
(Turing 1947)

One remarkable result of Turing’s investigation is that he was able
to describe a single computer which is able to compute any

Liesbeth De Mol

Winter 2021 Edition 49

The result was a series of experimental machines such as the MINAC,
TX-0 (Lincoln Lab) or the ZERO machine (van der Poel) which in their
turn became predecessors of a number of commercial machines. It is
worth pointing out that also Turing’s ACE machine design fits into this
philosophy. It was also commercialized as the BENDIX G15 machine (De
Mol, Bullynck, & Daylight 2018).

Of course, by minimizing the machine instructions, coding or
programming became a much more complicated task. To put it in Turing’s
words who clearly realized this trade-off between code and (hard-wired)
instructions when designing the ACE: “[W]e have often simplified the
circuit at the expense of the code” (Turing 1947). And indeed, one sees
that with these early minimal designs, much effort goes into developing
more efficient coding strategies. It is here that one can also situate one
historical root of making the connection between the universal Turing

computable number. He called this machine a universal computer.
It is thus the “best possible” computer mentioned.

[…] This surprising result shows that in examining the question of
what problems are, in principle, solvable by computing machines,
we do not need to consider an infinite series of computers of
greater and greater complexity but may think only of a single
machine.

Even more surprising than the theoretical possibility of such a
“best possible” computer is the fact that it need not be very
complex. The description given by Turing of a universal computer
is not unique. Many computers, some of quite modest complexity,
satisfy the requirements for a universal computer. (Frankel 1956:
635)

Turing Machines

50 Stanford Encyclopedia of Philosophy

machine and the important principle of the interchangeability between
hardware and programs.

Today, the universal Turing machine is by many still considered as the
main theoretical model of the modern computer especially in relation to
the so-called von Neumann architecture. Of course, other models have
been introduced for other architectures such as the Bulk synchronous
parallel model for parallel machines or the persistent Turing machine for
modeling interactive problems.

5.3 Theories of Programming

The idea that any general-purpose machine can, in principle, be modeled
as a universal Turing machine also became an important principle in the
context of automatic programming in the 1950s (Daylight 2015). In the
machine design context it was the minimizing of the machine instructions
that was the most important consequence of that viewpoint. In the
programming context then it was about the idea that one can built a
machine that is able to ‘mimic’’ the behavior of any other machine and so,
ultimately, the interchangeability between machine hardware and language
implementations. This is introduced in several forms in the 1950s by
people like John W. Carr III and Saul Gorn—who were also actively
involved in the shaping of the Association for Computing Machinery
(ACM)—as the unifying theoretical idea for automatic programming
which indeed is about the (automatic) “translation” of higher-order to
lower-level, and, ultimately, machine code. Thus, also in the context of
programming, the universal Turing machine starts to take on its
foundational role in the 1950s (Daylight 2015).

Whereas the Turing machine is and was a fundamental theoretical model
delimiting what is possible and not on the general level, it did not have a
real impact on the syntax and semantics of programming languages. In

Liesbeth De Mol

Winter 2021 Edition 51

that context it were rather λ-calculus and Post production systems that had
an effect (though also here one should be careful in overstating the
influence of a formal model on a programming practice). In fact, Turing
machines were often regarded as machine models rather than as a model
for programming:

Thus one sees that the role of the Turing machine for computer science
should be situated rather on the theoretical level: the universal machine is
today by many still considered as the model for the modern computer
while its ability to mimic machines through its manipulation of programs-
as-data is one of the basic principles of modern computing. Moreover, its
robustness and naturalness as a model of computability have made it the
main model to challenge if one is attacking versions of the so-called
(physical) Church-Turing thesis.

Bibliography

Barwise, Jon and John Etchemendy, 1993, Turing’s World, Stanford, CA:
CSLI Publications.

Boolos, George S. and Richard C. Jeffrey, 1974, Computability and Logic,

Turing machines are not conceptually different from the automatic
computers in general use, but they are very poor in their control
structure. […] Of course, most of the theory of computability deals
with questions which are not concerned with the particular ways
computations are represented. It is sufficient that computable
functions be represented somehow by symbolic expressions, e.g.,
numbers, and that functions computable in terms of given
functions be somehow represented by expressions computable in
terms of the expressions representing the original functions.
However, a practical theory of computation must be applicable to
particular algorithms. (McCarthy 1963: 37)

Turing Machines

52 Stanford Encyclopedia of Philosophy

Cambridge: Cambridge University Press; fifth edition 2007.
doi:10.1017/CBO9780511804076 (fifth edition)

Bromley, Allan G., 1985, “Stored Program Concept. The Origin of the
Stored Program Concept”, Technical Report 274, Basser Department
of Computer Science, November 1985. [Bromley 1985 available
online]

Bullynck, Maarten, Edgar G. Daylight, and Liesbeth De Mol, 2015, “Why
Did Computer Science Make a Hero Out of Turing?”,
Communications of the ACM, 58(3): 37–39.doi:10.1145/2658985

Church, Alonzo, 1932, “A Set of Postulates for the Foundation of Logic”,
Annals of Mathematics, 33(2): 346–366. doi:10.2307/1968337

–––, 1933, “A Set of Postulates for the Foundation of Logic (Second
Paper)”, Annals of Mathematics, 34(4): 839–864.
doi:10.2307/1968702

–––, 1936a, “An Unsolvable Problem of Elementary Number Theory”,
American Journal of Mathematics, 58(2): 345–363.

–––, 1936b, “A Note on the Entscheidungsproblem”, Journal of Symbolic
Logic, 1(1): 40–41. doi:10.2307/2269326

–––, 1937, “Review of: On Computable Numbers with An Application to
the Entscheidungsproblem by A.M. Turing”, Journal of Symbolic
Logic, 2(1): 42–43. doi:10.1017/S002248120003958X

Cook, Matthew, 2004, “Universality in Elementary Cellular Automata”,
Complex Systems, 15(1): 1–40.

Cooper, S. Barry and Jan Van Leeuwen, 2013, Alan Turing: His Work and
Impact, Amsterdam: Elsevier. doi:10.1016/C2010-0-66380-2

Copeland, B. Jack, 2002, “Accelerating Turing Machines”, Minds and
Machines, 12(2): 281–301. doi:10.1023/A:1015607401307

Copeland, B. Jack and Diane Proudfoot, 2011, “Alan Turing: Father of the
Modern Computer”, The Rutherford Journal, 4: 1. [Copeland &
Proudfoot 2011 available online]

Davis, Martin, 1958 [1982], Computability and Unsolvability, New York:

Liesbeth De Mol

Winter 2021 Edition 53

McGraw-Hill. Reprinted Dover, 1982.
–––, 1965, The Undecidable. Basic papers on undecidable propositions,

unsolvable problems and computable functions, New York: Raven
Press.

–––, 1978, “What is a Computation?”, Lynn Arthur Steen (ed.),
Mathematics Today: Twelve Informal Essays, New York: Springer,
pp. 241–267. doi:10.1007/978-1-4613-9435-8_10

–––, 1982, “Why Gödel Didn’t Have Church’s Thesis”, Information and
Control, 54:(1–2): 3–24. doi:10.1016/S0019-9958(82)91226-8

–––, 1988, “Mathematical Logic and the Origin of the Modern Computer”,
in Herken 1988: 149–174.

–––, 1989, “Emil Post’s Contribution to Computer Science”, Proceedings
of the Fourth Annual Symposium on Logic in Computer Science,
IEEE Computer Society Press, pp. 134–137.
doi:10.1109/LICS.1989.39167

Davis, Martin and Wilfried Sieg, 2015, “Conceptual Confluence in 1936:
Post and Turing”, in Giovanni Sommaruga and Thomas Strahm
(eds.), Turing’s Revolution: The Impact of His Ideas about
Computability, Cham: Springer. doi:10.1007/978-3-319-22156-4_1

Daylight, Edgar G., 2014, “A Turing Tale”, Communications of the ACM,
57(10): 36–38. doi:10.1145/2629499

–––, 2015, “Towards a Historical Notion of ‘Turing—The Father of
Computer Science’”, History and Philosophy of Logic, . 36(3): 205–
228. doi:10.1080/01445340.2015.1082050

De Mol, Liesbeth, 2013, “Generating, Solving and the Mathematics of
Homo Sapiens. Emil Post’s Views On computation”, Hector Zenil
(ed.), A Computable Universe. Understanding Computation &
Exploring Nature As Computation, Hackensack, NJ: World Scientific,
pp. 45–62. doi:10.1142/9789814374309_0003 [De Mol 2013
available online]

De Mol, Liesbeth, Maarten Bullynck, and Edgar G. Daylight, 2018, “Less

Turing Machines

54 Stanford Encyclopedia of Philosophy

is More in the Fifties: Encounters between Logical Minimalism and
Computer Design during the 1950s”, IEEE Annals of the History of
Computing, 40(1): 19–45. doi:10.1109/MAHC.2018.012171265 [De
Mol et al. 2018 available online]

Deutsch, D., 1985, “Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer”, Proceedings of the Royal Society A,
400(1818): 97–117. doi:10.1098/rspa.1985.0070

Dershowitz, Nachum and Yuri Gurevich, 2008, “ A Natural
Axiomatization of Computability and Proof of Church’s Thesis”,
Bulletin of Symbolic Logic, 14(3): 299–350.

Frankel, Stanley, 1956, “Useful Applications of a Magnetic-Drum
Computer”, Electrical Engineering, 75(7): 634–39,
doi:10.1109/EE.1956.6442018

Gandy, Robin, 1980, “Church’s Thesis and Principles for Mechanism”, in
Jon Barwise, H. Jerome Keisler, and Kenneth Kunen (eds.), The
Kleene Symposium: Proceedings of the Symposium Held June 18–24,
1978 at Madison, Wisconsin, U.S.A., (Studies in Logic and the
Foundations of Mathematics, 101), Amsterdam: North-Holland, pp.
123–148. doi:10.1016/S0049-237X(08)71257-6

–––, 1988, “The Confluence of Ideas in 1936”, in Herken 1988: 55–111.
Gödel, Kurt, 1929, “Die Vollständigkeit der Axiome des logischen

Funktionenkalkül”, Monatshefte für Mathematik und Physik, 37:
349–360. doi:10.1007/BF01696781

–––, 1934, “On Undecidable Propositions of Formal Mathematical
Systems”, mimeographed lecture notes by S. C. Kleene and J. B.
Rosser, Institute for Advanced Study, Princeton, NJ; corrected and
amplified in Davis 1965: 41–74.

Grier, David Alan, 2007, When Computers Were Human, Princeton, NJ:
Princeton University Press.

Haigh, Thomas, 2013, “‘Stored Program Concept’ Considered Harmful:
History and Historiography”, in Paola Bonizzoni, Vasco Brattka, and

Liesbeth De Mol

Winter 2021 Edition 55

Benedikt Löwe, The Nature of Computation. Logic, Algorithms,
Applications: 9th Conference on Computability in Europe, CiE 2013,
Milan, Italy, July 1–5, 2013 Proceedings, (Lecture Notes in
Computer Science, 7921), Berlin: Springer, pp. 241–251.
doi:10.1007/978-3-642-39053-1_28

–––, 2014, “Actually, Turing Did Not Invent the Computer”,
Communications of the ACM, 57(1): 36–41. doi:10.1145/2542504

Hamkins, Joel David and Andy Lewis, 2000, “Infinite Time Turing
Machines”, Journal of Symbolic Logic, 65(2): 567–604.
doi:10.2307/2586556

Hartmanis, J. and R.E. Stearns, 1965, “On the Computational Complexity
of Algorithms” Transactions of the American Mathematical Society,
117: 285–306. doi:10.1090/S0002-9947-1965-0170805-7

Herken, Rolf, (ed.), 1988, The Universal Turing Machine: A Half-Century
Survey, New York: Oxford University Press.

Hilbert, David, 1930, “Naturerkennen und Logik”, Naturwissenschaften,
18(47–49): 959–963. doi:10.1007/BF01492194

Hilbert, David and Wilhelm Ackermann, 1928, Grundzüge der
Theoretischen Logik, Berlin: Springer. doi:10.1007/978-3-642-65400-
8

Hodges, Andrew, 1983, Alan Turing: The Enigma, New York: Simon and
Schuster.

Kleene, Stephen Cole, 1936, “General Recursive Functions of Natural
Numbers”, Mathematische Annalen, 112: 727–742.
doi:10.1007/BF01565439

–––, 1943, “Recursive predicates and quantifiers”, Transactions of the
American Mathematical Society, 53(1): 41–73. doi:10.2307/2267986

–––, 1952, Introduction to Metamathematics, Amsterdam: North Holland.
Lambek, Joachim, 1961, “How to Program an Infinite Abacus”, Canadian

Mathematical Bulletin, 4: 295–302. doi:10.4153/CMB-1961-032-6
Lewis, Henry R. and Christos H. Papadimitriou, 1981, Elements of the

Turing Machines

56 Stanford Encyclopedia of Philosophy

Theory of Computation, Englewood Cliffs, NJ: Prentice-Hall.
Lin, Shen and Tibor Radó, 1965, “Computer Studies of Turing Machine

Problems”, Journal of the Association for Computing Machinery,
12(2): 196–212. doi:10.1145/321264.321270

Mancosu, Paolo, Richard Zach, and Calixto Badesa, 2009, “The
Development of Mathematical Logic from Russell to Tarski, 1900–
1935”, in Leila Haaparanta (ed.), The Development of Modern Logic,
New York: Oxford University Press, pp. 318–470.
doi:10.1093/acprof:oso/9780195137316.003.0029 [Mancosu et al.
2009 available online]

Margenstern, Maurice, 2000, “Frontier Between Decidability and
Undecidability: A Survey”, Theoretical Computer Science, 231(2):
217–251. doi:10.1016/S0304-3975(99)00102-4

McCarthy, John, 1963, “A Basis for a Mathematical Theory of
Computation”, in: P. Braffort and D. Hirschberg, Computer
Programming and Formal Systems, Amsterdam: North-Holland, pp.
33–70. [McCarthy 1963 available online]

Minsky, Marvin, 1961, “Recursive Unsolvability of Post's Problem of
‘Tag’ and other Topics in Theory of Turing Machines”, Annals of
Mathematics, 74(3): 437–455. doi:10.2307/2269716

–––, 1967, Computation: Finite and Infinite Machines, Englewood Cliffs,
NJ: Prentice Hall.

Moore, E.F., 1952, “A simplified universal Turing machine”, Proceedings
of the Association of Computing Machinery (meetings at Toronto,
Ontario), Washington, DC: Sauls Lithograph, 50–55.
doi:10.1145/800259.808993

Mounier-Kuhn, Pierre, 2012, “Logic and Computing in France: A Late
Convergence”, in AISB/IACAP World Congress 2012: History and
Philosophy of Programming, University of Birmingham, 2-6 July
2012. [Mounier-Kuhn 2012 available online]

Odifreddi, P., 1989, Classical Recursion Theory, Amsterdam: Elsevier.

Liesbeth De Mol

Winter 2021 Edition 57

Petzold, Charles, 2008, The Annotated Turing: A Guided Tour Through
Alan Turing’s Historic Paper on Computability and Turing Machines,
Indianapolis, IN: Wiley.

Post, Emil L., 1936, “Finite Combinatory Processes-Formulation 1”,
Journal of Symbolic Logic, 1(3): 103–105. doi:10.2307/2269031

–––, 1944, “Recursively Enumerable Sets of Positive Integers and Their
Decision Problems”, Bulletin of the American Mathematical Society,
50(5): 284–316. [Post 1944 available online]

–––, 1947, “Recursive Unsolvability of a Problem of Thue”, Journal of
Symbolic Logic, 12(1): 1–11. doi:10.2307/2267170

–––, 1965, “Absolutely Unsolvable Problems and Relatively Undecidable
Propositions—Account of an Anticipation”, in Martin Davis (ed.),
The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions, New York: Raven
Press. Corrected republication 2004, Dover publications, New York,
pp. 340–433.

Pullum, Geoffrey K., 2011, “On the Mathematical Foundations of
Syntactic Structures”, Journal of Logic, Language and Information,
20(3): 277–296. doi:10.1007/s10849-011-9139-8

Rabin, M.O. and D. Scott, 1959, “Finite Automata and their Decision
Problems”, IBM Journal of Research and Development, 3(2): 114–
125. doi:10.1147/rd.32.0114

Radó, Tibor, 1962, “On Non-Computable Functions”, Bell System
Technical Journal, 41(3/May): 877–884. doi:10.1002/j.1538-
7305.1962.tb00480.x

Shannon, Claude E., 1956, “A Universal Turing Machine with Two
Internal States”, in Shannon & McCarthy 1956: 157–165.
doi:10.1515/9781400882618-007

Shannon, Claude E. and John McCarthy (eds), 1956, Automata Studies,
(Annals of Mathematics Studies, 34), Princeton: Princeton University
Press.

Turing Machines

58 Stanford Encyclopedia of Philosophy

Shapiro, Stewart, 2007, “Computability, Proof, and Open-Texture”, in
Adam Olszewski, Jan Wolenski, and Robert Janusz (eds.), Church’s
Thesis After 70 years, Berlin: Ontos Verlag, pp. 420–455.
doi:10.1515/9783110325461.420

Sieg, Wilfried, 1994, “Mechanical Procedures and Mathematical
Experience”, in Alexander George (ed.), Mathematics and Mind,
Oxford: Oxford University Press, pp. 71–117.

–––, 1997, “Step by Recursive Step: Church’s Analysis of Effective
Calculability”, The Bulletin of Symbolic Logic, 3(2): 154–180.
doi:10.2307/421012

–––, 2008, “Church without Dogma: Axioms for Computability”, in S.
Barry Cooper, Benedikt Löwe, and Andrea Sorbi (eds.), New
Computational Paradigms: Changing Conceptions of What is
Computable, New York: Springer Verlag, pp. 139–152.
doi:10.1007/978-0-387-68546-5_7

Sipser, Michael, 1996, Introduction to the Theory of Computation, Boston:
PWS Publishing.

Soare, Robert I., 1996, “Computability and Recursion”, Bulletin for
Symbolic Logic, 2(3): 284–321. doi:10.2307/420992

Strachey, Christopher, 1965, “An Impossible Program (letter to the editor
)”, The Computer Journal, 7(4): 313. doi:10.1093/comjnl/7.4.313

Teuscher, Christof (ed.), 2004, Alan Turing: Life and Legacy of a Great
Thinker, Berlin: Springer. doi:10.1007/978-3-662-05642-4

Turing, A.M., 1936–7, “On Computable Numbers, With an Application to
the Entscheidungsproblem”, Proceedings of the London
Mathematical Society, s2-42: 230–265; correction ibid., s2-43: 544–
546 (1937). doi:10.1112/plms/s2-42.1.230 and doi:10.1112/plms/s2-
43.6.544

–––, 1937, “Computability and λ-Definability”, Journal of Symbolic
Logic, 2(4): 153–163. doi:10.2307/2268280

–––, 1939, “Systems of Logic Based on Ordinals”, Proceedings of the

Liesbeth De Mol

Winter 2021 Edition 59

London Mathematical Society, s2-45: 161–228. doi:10.1112/plms/s2-
45.1.161

–––, 1947 [1986], “Lecture to the London Mathematical Society on 20
February 1947”, reprinted in A M. Turing's ACE Report of 1946 and
Other Papers: Papers by Alan Turing and Michael Woodger,
(Charles Babbage Institute Reprint, 10), B.E. Carpenter and R.W.
Doran (eds.), Cambridge, MA: MIT Press, 1986.

–––, 1954, “Solvable and Unsolvable Problems”, Science News,
(February, Penguin), 31: 7–23.

Wang, Hao, 1957, “A Variant to Turing’s Theory of Computing
Machines”, Journal of the ACM, 4(1): 63–92.
doi:10.1145/320856.320867

Watanabe, Shigeru, 1961, “5-Symbol 8-State and 5-Symbol 6-State
Universal Turing Machines”, Journal of the ACM, 8(4): 476–483.
doi:10.1145/321088.321090

Woods, Damien and Turlough Neary, 2007, “Small Semi-Weakly
Universal Turing Machines”, in Jérôme Durand-Lose and Maurice
Margenstern (eds.), Machines, Computations, and Universality: 5th
International Conference, MCU 2007 Orléans, France, September
10–13, 2007, (Lecture Notes in Computer Science, 4664), Berlin:
Springer, pp. 303–315. doi:10.1007/978-3-540-74593-8_26

–––, 2009, “The Complexity of Small Universal Turing Machines: A
Survey”, Theoretical Computer Science, 410(4–5): 443–450.
doi:10.1016/j.tcs.2008.09.051

Academic Tools

How to cite this entry.
Preview the PDF version of this entry at the Friends of the SEP
Society.
Look up topics and thinkers related to this entry at the Internet
Philosophy Ontology Project (InPhO).

Turing Machines

60 Stanford Encyclopedia of Philosophy

Other Internet Resources

“Turing Machines”, Stanford Encyclopedia of Philosophy (Fall 2018
Edition), Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/fall2018/entries/turing-machine/>.
[This was the previous entry on Turing Machines in the SEP, written
by David Barker-Plummer.].
Aaronson, Scott, Mohammad Bavarian, and Giulio Gueltrini, 2016,
“Computability Theory of Closed Timelike Curves”, manuscript
available at arXiv.org.
The Alan Turing Home Page, maintained by Andrew Hodges
Bletchley Park, in the U.K., where, during the Second World War,
Alan Turing was involved in code breaking activities at Station X.

Busy Beaver

Michael Somos’ page of Busy Beaver references.

The Halting Problem

Halting problem is solvable (funny)

Online Turing Machine Simulators

Turing machines are more powerful than any device that can actually be
built, but they can be simulated both in software and hardware.

Enhanced bibliography for this entry at PhilPapers, with links
to its database.

Liesbeth De Mol

Winter 2021 Edition 61

Software simulators

There are many Turing machine simulators available. Here are three
software simulators that use different technologies to implement
simulators using your browser.

Andrew Hodges’ Turing Machine Simulator (for limited number of
machines)
Suzanne Britton’s Turing Machine Simulator (A Java Applet)

Here is an application that you can run on the desktop (no endorsement of
these programs is implied).

Visual Turing: freeware simulator for Windows 95/98/NT/2000

Hardware simulators

Turing Machine in the Classic Style, Mike Davey’s physical Turing
machine simulator.
Lego of Doom, Turing machine simulator using Lego™.

Related Entries

Church-Turing Thesis | computability and complexity | computational
complexity theory | recursive functions | Turing, Alan

Acknowledgments

The version of this entry published on September 24, 2018 is essentially a
new entry, though the author would like to acknowledge the few sentences
that remain from the previous version written by David Barker-Plummer.
See also footnote 1 for an acknowledgment to S. Barry Cooper.

Turing Machines

62 Stanford Encyclopedia of Philosophy

Notes to Turing Machines

1. The update to this entry published in September 2018 was initially
begun in 2015 by S. Barry Cooper, who died unexpectedly shortly after he
began work. His most important change at that time was to sketch some of
the points he was planning to discuss in the updated entry. We used these
points as a guideline to shape the 2018 update. They can be summarized as
follows:

i. The description of the algorithmic activity is explicitly aimed at the
machine, rather than at an attendant human. And this activity is
reduced by Turing to its simplest elements, yielding an honesty about
the work done appropriate to the measuring of computational
complexity or allowing more general computations of infinite length.

ii. The role of the data to be manipulated is clear and relatively flexible
within the logical structure of the algorithm, a spotlighting
appropriate to today’s informational world.

iii. The focus on a ‘machine’, based on Turing’s modelling of it on the
human computer following instructions, makes clearer the
dependence of the implementation of abstract computation on the
provision of a physical host. And conversely, Turing’s clear
description of the modelling and its incorporation of all possibilities,
persuaded Gödel and others of the validity of the Church-Turing
thesis.

iv. Turing’s predilection for ingenious programs arose from an early
awareness of the flexibility of the balance between computer
hardware and software. But it was his description of the program
using language representable as data readable by the machine that
anticipated the program-as-data paradigm. And the latter led to
Turing’s Universal machine (see below), and the theoretical
underpinning of John von Neumann’s logical architecture, so
important in the history of today’s stored-program computer.

Liesbeth De Mol

Winter 2021 Edition 63

v. In Turing 1936–7, the unsolvability of Hilbert’s
Entscheidungsproblem becomes more clearly associated with the
sampling of collated computable data—clarifying the association of
incomputability with descriptions involving the use of quantifiers.
The relationship of descriptions using natural language to the
underlying computability, or lack of it, is an ongoing area of research
and speculation.

We note here that Section 5, was written based on point iv.

Copyright © 2021 by the author
Liesbeth De Mol

Turing Machines

64 Stanford Encyclopedia of Philosophy

